HEAT TRANSFER IN LIQUID OXYGEN
BOILING IN A LARGE VOLUME

Yu. A, Kirichenko, V. V. Tsybul'skii, UDC 536.423.1:546.21
and A. V. Kostromeev '

The heat transfer in liquid oxygen boiling in the temperature range —194 to -153°C
at pressures of (0.025-1.08)-10% N/ m? was experimentally investigated. The em-
pirical dependence of the heat-transfer coefficient on thermal flux density and pres-
sure is derived.

At the present time there is no complete theory of the boiling process which permits the calculation
of certain heat-transfer characteristics which are important in practical applications. In many cases ex-
perimental studies remain the most reliable method of obtaining the quantitative characteristics of the boil-
ing process under different conditions. This is especially true for eryogenic liquids, which are finding
wider application in contemporary technology, and for which the boiling process has yet to be adequately
studied [1].

This studj will be dedicated to an examination of heat transfer in liquid oxygen boiling in a large
volume in the region of moderate pressures (to 10% N/ m?), since in this region no detailed experimental
investigations have been conducted [2, 3].

A schematic diagram of the experimental apparatus is presented in Fig. 1 [4]. The essential part
of the apparatus consists of four steel shells placed inside each other and vacuum sealed by lids. These
shells form two Dewar flasks of special shape. The shells are provided with observation windows 1. The
internal volume 2 of the inner Dewar flask served as the working space. The volume 3 external to the
inner flask serves as a buffer zone, being filled with a heat-transfer gas during the experiment by means
of valve 4 and pipe 5; valves 6, 7 are mounted on its cover. The internal volume of the outer Dewar flask
8 is filled with liquid nitrogen through pipe 9 and serves as a thermostat, eliminating heat flow to the
inner Dewar flask. The condenser 10 is located inside the thermostat volume. In the volume 11, external
to the outer flask a high vacuum is maintained.

Boiling studies were conducted witha tubular horizontal heater 12 with polished surface (tube of
1Kh18N9T stainless steel; external diameter 8-10~3 m, wall thickness 3-10™% m, length 0.1 m), which
is attached to copper current leads 13. The current leads pass through the lids of all the cylinders.

The temperature of the heater working surface was measured with a copper — constantan thermo-
couple, the test junctions of which were placed within the heater in thermal contact with the wall surface.
The reference junctions of the thermocouple were located in a brass channel 14, situated within the work-
ing space, which allowed measurements of the difference between the temperature of the interior wall and
the average volume temperature of the liquid being studied. The temperature head between the external
surface of the heater and the liquid volume is found from the measured temperature difference by cal-
culating the temperature drop over the heater wall thickness [5].

To measure the emf of the thermocouple 2 compensation system was employed, including an R 306
potentiometer and an M 195/1 mirror galvanometer. The temperature of the volume of the liquid oxygen
was measured by five thermocouples 15, located at various heights in the working space, as well as a
platinum resistance thermometer 16.
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Fig. 1. Schematic diagram of experimental apparatus.

The heater was fed by a VU-12/600A rectifier.

When the liquid oxygen boils, the vapor is fed through pipes 17, 18 and valve 19 to condenser 10
where it is condensed, the condensate being returned to the working space through valve 7 and pipe 20.

The oxygen vapor pressure in the working volume was measured by an MO standard manometer 21,
to 10 kgf/ cm?,

Studies were conducted with 99.95% pure liquid oxygen.

Before experiments the working volume of the apparatus was carefully rinsed with ethanol, and then
evacuated by heating and exhaust through valves 22, 23, 24, 25 and pipes 26, 27, 28. The working volume
is filled to the upper lid with liquid oxygen from pipe 29, while the thermostat volume is filled with liquid
nitrogen. By heating the liquid oxygen with the auxiliary heater 30 the necessary temperature and pres-
sure conditions were obtained in the working volume.

Experiments to study the heat exchange in the boiling of liquid oxygen were conducted at thermal
flux densities q between 40 and 170,000 W/ m?. During the experiments the temperature of the liquid oxXy~-
gen varied —~194 to —153°C, and the pressure in the range (0.025-1.08) - 10% N/ m?2.

Allowing for error in measuring the current and voltage drop at the heater, the error in determining
q was £6%. The corresponding error in the determination of the temperature drop At was +20%, and that
for the heat-transfer coefficient +26%.

For 12 pressure values the dependence of the heat-transfer coefficient on the thermal flux dénsity q
was determined; the results are shown in Fig. 2. The heat-transfer coefficient was determined from the
formula '

a = q/At. . (@3]
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Fig. 2. Dependence of heat-transfer coefficients on thermal
flux density: 1) P = 0.025 N/m?; 2) 0.098 - 10%; 3) 0.196 - 105;
4) 0.294 -10%; 5) 0.392-10% 6) 0.49-10% 7) 0.59-10% 8) 0.686
-10% 9) 0.784-105 10) 0.88-10%; 11) 0.98 - 10%; 12) 1.08- 108,

The dependence of qcr/ dgep Ob saturation pressure P is given in Fig. 3. For comparison, data from
[2, 3] are also shown in Fig. 3. The character of the dependence obtained in the present study is indistin-
guishable from that calculated using the data of [2, 3]. The departures in values of qpy/Qger lie within the
limits of agreement of the results of the various authors.

The studies were conducted for each of the pressures over the range from pure convection to the
first critical thermal flux.

Visual observations showed that, at thermal flux densities q from 50 to 2100 W/ m? in the pressure
range examined, liquid boiling began in particular regions of the heater. With an increase in g to 5000 W
/m?, there appeared new active centers of vapor formation, which generated vapor independently of each
other (isolated bubble mode). With further increase in q to 30,000 W/ m?, there occurred a fusion of the
separate vapor bubbles, at first at some distance from the heater, and then on the heater itself (mode of
fusion of individual bubbles into a vapor structure, "the vapor mushroom?®). At q values above 30,000 W/ m?
developed bubble boiling was observed (region of vapor mushrooms [6]).

The function characterizing heat transfer (Fig. 2) does not have the irregularities noted in [3].

The experimental data presented in Fig. 2 can be represented by the following empirical equation
found by the method of least squares:

o = 10.5.10~2 P0.25 q0.75‘ (2)

The heat-exchange data obtained in our study of the boiling of liquid oxygen at atmospheric pressure
were found to be in good agreement with the results of [7], where a horizontal steel pipe served as a
heater, while they differed on the average by 10% from the results of [5], where a vertical tubular copper
heater was employed. The results of the well-known studies [2, 3] using a planar platinum heater over a
wide pressure range are at variance with our results, These departures are evidently connected with the
differences in heater geometry and material, '

We will compare the results with some semiempirical formulae for heat transfer in bubble boiling*:

1) Kutateladze [10]

o ( o )1/2 =7.0-10“4[twq*”( o ~)1/2 '!D.? [i( o )1/2 ]0.7 Pr;o"%; 3
o\ glog—oy) Loal gl —0) . O\ glog—o) /.

* Unfortunately, they cannot be compared with the results of Tien [8] and Lienhard [9], which include
parameters related to the number of active boiling centers, since corresponding observations were not
made in our study.

1009



1010

1 v
qcr/qmr \-} v
z vyl o} 7
Rass e
6| °
§ 04
A v
10° |- 9 . ©
' a
§
sk
A —
o — 2
v —3
2
¥
w0’ Z i 3
0% 2 5 1w 2 5 1 2 PrE

Fig. 3. Dependence of qcr/qocr on pressure: 1) data of
present study; 2) [2]; 3) [3].
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Fig. 4. Generalized experimental data according to Eq. (6)
for liquid oxygen boiling in a large volume [Nu = (/M) (o
/8o — p/2, Pe = @/ Loya) (o /g(o, - py))'/?, Kp = (P
/o) (o/ &P, — py))/ ?]. Notation as'in Fig. 2.

2) Ronsenow [11]

y 1/2 70.33 :
cy At - NTZ[J*‘ (’___G__) } Pry7 (4
L ul \ glo; —p)
where Np; = 0.013;
3) Gilmour [12]
4 —0.3 425
v — 0,001 (LLDT ) ( P )0 Py, (5)
crprAt . ploy 089



4} Borishanskii and Minchenko {13}

i __‘_L— 172 B y g g o \],‘2 JOJ{ P : o )1/2 :\0.7
~ =87-10 . ~ 6
A ( g(pz_pv) ) [vaa ( g(pZ —py) } ] ( g(pl —‘Ov) (6)

As is evident from Fig. 4, the departure of the average values of our results from Eqg, (6) does not
exceed 15-20%. Data calculated from Eds. (3) and @) depart from ours by +30%, while the departure of
of our results from Eq. (5) is 80%.

Our results can best be described by the following dimensionless relationship, obtained by the method
of least squares (numerical values for the physical properties of liquid oxygen were taken from [14]):

_?..(____G_~_>1/2 =5.763-10‘4[ q ( I )1/2 }0.75 [i( p )1/2 ](m @
Mgl e Lpa\ glog —p) o\ glor —py

with change in the limits of the defining criteria

1/2
15100 < £ o ) <3-10%

o ( gle; —o,) /

‘ 172
15100 < 7 ( o ) <3- 10,
Loga \ glo; —p,)

Equation (7) has the same structure as Eq, (6), differing somewhat in the values of the numerical
coefficients and exponents.

The dimensional equation (2) and the dimensionless equation (7) describe our data with a divergence
of +10%.

For the calculation of heat~transfer coefficients for liquid oxygen boiling in 2 horizontal tubular
heater in the region of moderate pressures (up to 105 N/ m?) the equation of Borishanski and Minchenko,
Eq. (6), may be recommended, together with Egs. 2) and (7).

NOTATION

is the heat flux density, W/ m?;

is the temperature head, deg;

is the heat-transfer coefficient, W/ m? . deg;

is the thermal conductivity, W/ m - deg;

is the acceleration due to gravity, m/sec?;

is the coefficient of surface tension;

is the latent heat of vaporization, J/kg;

is the thermal diffusivity, m?/sec;

is the system pressure, N/m?;

is the specific heat capacity, J/kg-deg;

is the diameter of the tubular heating surface, m;
is the dynamic viscosity of liquid phase, kg/m-sec;
is the density, kg/m3;

Pr = cu/ A is the Prandtl number.

(54

MO R OO g Qg >R e

Subsecripts

Z denotes the liquid phase;
v denotes the vapor phase;
T denotes the heating surface;

cr  denotes the critical value
scr  denotes the critical value at atmospheric pressure,
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